0 EA
장바구니 주문배송조회
   현재위치 : HOME >
Fundamentals of General, Organic, and Biological Chemistry: Pearson New International Edition, 7/E
판매가격  : 50,000원
적립금  : 1,500점
출판사  : Pearson
저자  : John E. McMurry
발행일  : 2013
페이지 수  : 976면
ISBN  : 9781292022239
소개하기  :
주문수량  :

Fundamentals of General, Organic, and Biological Chemistry by McMurry, Ballantine, Hoeger, and Peterson provides background in chemistry and biochemistry with a relatable context to ensure students of all disciplines gain an appreciation of chemistry’s significance in everyday life.

Known for its clarity and concise presentation, this book balances chemical concepts with examples, drawn from students’ everyday lives and experiences, to explain the quantitative aspects of chemistry and provide deeper insight into theoretical principles. The Seventh Edition focuses on making connections between General, Organic, and Biological Chemistry through a number of new and updated features — including all-new Mastering Reactions boxes, Chemistry in Action boxes, new and revised chapter problems that strengthen the ties between major concepts in each chapter, practical applications, and much more.


This package contains:

  • Fundamentals of General, Organic, and Biological Chemistry, Seventh Edition





Focus On Making Connections
  • Concepts to Review call attention to the connections between general, organic, and biological chemistry–connections which students might not recognize otherwise. Starting with Chapter 3, the Concepts to Review section at the beginning of the chapter lists topics from earlier chapters that form the basis for discussion in the current chapter.
  • Concept link icons indicate areas where previously covered concepts are relevant to the discussion at hand. This highly praised feature provides cross-references and highlights important chemical themes as they are revisited.
  • Looking Ahead notes call attention to connections to concepts in forthcoming chapters. These notes illustrate to the students why what they are learning in this discussion will be useful in understanding future concepts.
  • NEW! Concept Maps at the end of appropriate chapters illustrate and reinforce the connections between concepts discussed in each chapter, and concepts in previous or later chapters.
Focus on Learning
  • Worked Examples provide problem-solving strategies to enable student understanding.
    • Most Worked Examples include an Analysis section that precedes the Solution. The Analysis lays out the approach to solving a problem of the given type.
    • When appropriate, a Ballpark Estimate gives students an overview of the relationships needed to solve the problem, and provides an intuitive approach to arrive at a rough estimate of the answer.
    • The Solution presents the worked-out example using the strategy laid out in the Analysis and, in many cases, includes expanded discussion to enhance student understanding.
    • When applicable, following the Solution there is a Ballpark Check that compares the calculated answer to the Ballpark Estimate, and verifies that the answer makes chemical and physical sense.
  • Key Concept Problems integrated throughout the chapters focus attention on the use of essential concepts, as do the Understanding Key Concepts problems at the end of each chapter. These problems immediately focus students’ attention on essential concepts and tests their comprehension.
    • Understanding Key Concepts problems are designed to test students’ mastery of the core principles developed in the chapter. Students thus have an opportunity to ask “Did I get it?” before they proceed.
    • Most of these Key Concept Problems use graphics or molecular-level art to illustrate the core principles and will be particularly useful to visual learners.
  • Comprehensive problems within the chapters, for which brief answers are given in an appendix, cover every skill and topic to be understood. One or more problems follow each Worked Example and ¬others stand alone at the ends of sections. These allow students to practice and test their mastery of core principles within each chapter.
  • More color-keyed, labeled equations–Students often skip looking at a chemical equation while reading. The text extensively uses color to highlight the aspects of chemical equations and structures under discussion, a continuing feature of this book praised by users.
Focus on Relevancy
  • Applications are both integrated into the discussions in the text and set off from the text as Chemistry in Action boxes. Each Chemistry in Action feature provides sufficient information for reasonable understanding and extends the concepts discussed in the text in new ways. The application is followed by a cross-reference to end-of-chapter problems that can be assigned by the instructor.
  • NEW! Mastering Reactions feature boxes include How Addition Reactions Occur, How Elimination Reactions Occur, and Carbonyl Additions; they discuss how these important organic transformations are believed to occur. This new feature allows instructors to easily introduce discussions of mechanism into their coverage of organic chemistry.


New To This Edition

  • NEW and updated Chemistry in Action boxes (formerly Application boxes) provide a stronger thread among each application example, drawing connections between General, Organic, and Biological Chemistry.
  • NEW Mastering Reactions boxes discuss the “how” behind a number of organic reactions in relative depth.
  • NEW and revised In-chapter questions–specifically related to Chemistry in Action applications and Mastering Reactions–strengthen the connection between the chapter content and practical applications.
  • NEW Concept Maps are added to appropriate chapters to draw connections between General, Organic, and Biological Chemistry—particularly those chapters dealing with intermolecular forces, chemical reactions and energy, acid-base chemistry, and relationships between functional groups, proteins and their properties.
  • NEW and updated concept links provide more visual reminders to indicate where new material builds on concepts from previous chapters. Updated questions in the end of chapter section build on Concept Links. Questions will require students to recall information learned in previous chapters.
  • NEW and updated end-of-chapter (EOC) problems–Approximately 20-25% of the end-of-chapter problems have been revised to enhance clarity.
  • All chapter goals are now tied to end-of-chapter (EOC) problem sets. Chapter summaries include a list of EOC problems that correspond to the chapter goals, for a greater connection between problems and concepts.
  • Chapters 1 and 2 have been restructured, with greater emphasis on building math skills.
  • Chapter 6 (Chemical Reactions) has been reorganized into two chapters: Chapter 5 (Classification and Balancing of Chemical Reactions), and Chapter 6 (Chemical Reactions: Mole and Mass Relationships). This restructuring enables students to narrow their focus; chapter 5 focuses on the qualitative aspect of reactions, while chapter 6 focuses on calculations.


Table of Contents

1. Matter and Measurements
1.1 Chemistry: The Central Science
1.2 States of Matter
1.3 Classification of Matter
1.4 Chemical Elements and Symbols
1.5 Elements and the Periodic Table
1.6 Chemical Reaction: An Example of a Chemical Change
1.7 Physical Quantities
1.8 Measuring Mass, Length, and Volume
1.9 Measurement and Significant Figures
1.10 Scientific Notation
1.11 Rounding Off Numbers
1.12 Problem Solving: Unit Conversions and Estimating Answers
1.13 Temperature, Heat, and Energy
1.14 Density and Specific Gravity

2. Atoms and the Periodic Table
2.1 Atomic Theory
2.2 Elements and Atomic Number
2.3 Isotopes and Atomic Weight
2.4 The Periodic Table
2.5 Some Characteristics of Different Groups
2.6 Electronic Structure of Atoms
2.7 Electron Configurations
2.8 Electron Configurations and the Periodic Table
2.9 Electron-Dot Symbols

3. Ionic Compounds
3.1 Ions
3.2 Periodic Properties and Ion Formation
3.3 Ionic Bonds
3.4 Some Properties of Ionic Compounds
3.5 Ions and the Octet Rule
3.6 Ions of Some Common Elements
3.7 Naming Ions
3.8 Polyatomic Ions
3.9 Formulas of Ionic Compounds
3.10 Naming Ionic Compounds
3.11 H _ and OH _ Ions: An Introduction to Acids and Bases

4. Molecular Compounds
4.1 Covalent Bonds
4.2 Covalent Bonds and the Periodic Table
4.3 Multiple Covalent Bonds
4.4 Coordinate Covalent Bonds
4.5 Characteristics of Molecular Compounds
4.6 Molecular Formulas and Lewis Structures
4.7 Drawing Lewis Structures
4.8 The Shapes of Molecules
4.9 Polar Covalent Bonds and Electronegativity
4.10 Polar Molecules
4.11 Naming Binary Molecular Compounds

5. Classification and Balancing of Chemical Reactions
5.1 Chemical Equations
5.2 Balancing Chemical Equations
5.3 Classes of Chemical Reactions
5.4 Precipitation Reactions and Solubility Guidelines
5.5 Acids, Bases, and Neutralization Reactions
5.6 Redox Reactions
5.7 Recognizing Redox Reactions
5.8 Net Ionic Equations

6. Chemical Reactions:  Mole and Mass Relationships
6.1 The Mole and Avogadro’s Number
6.2 Gram–Mole Conversions
6.3 Mole Relationships and Chemical Equations
6.4 Mass Relationships and Chemical Equations
6.5 Limiting Reagent and Percent Yield

7. Chemical Reactions: Energy, Rates, and Equilibrium
7.1 Energy and Chemical Bonds
7.2 Heat Changes during Chemical Reactions
7.3 Exothermic and Endothermic Reactions
7.4 Why Do Chemical Reactions Occur? Free Energy
7.5 How Do Chemical Reactions Occur? Reaction Rates
7.6 Effects of Temperature, Concentration, and Catalysts on Reaction Rates
7.7 Reversible Reactions and Chemical Equilibrium
7.8 Equilibrium Equations and Equilibrium Constants
7.9 Le Châtelier’s Principle: The Effect of Changing Conditions on Equilibria

8. Gases, Liquids, and Solids
8.1 States of Matter and Their Changes
8.2 Intermolecular Forces
8.3 Gases and the Kinetic–Molecular Theory
8.4 Pressure
8.5 Boyle’s Law: The Relation between Volume and Pressure
8.6 Charles’s Law: The Relation between Volume and Temperature
8.7 Gay-Lussac’s Law: The Relation between Pressure and Temperature
8.8 The Combined Gas Law
8.9 Avogadro’s Law: The Relation between Volume and Molar Amount
8.10 The Ideal Gas Law
8.11 Partial Pressure and Dalton’s Law
8.12 Liquids
8.13 Water:  A Unique Liquid
8.14 Solids
8.15 Changes of State

9. Solutions
9.1 Mixtures and Solutions
9.2 The Solution Process
9.3 Solid Hydrates
9.4 Solubility
9.5 The Effect of Temperature on Solubility
9.6 The Effect of Pressure on Solubility: Henry’s Law
9.7 Units of Concentration
9.8 Dilution
9.9 Ions in Solution: Electrolytes
9.10 Electrolytes in Body Fluids: Equivalents and Milliequivalents
9.11 Properties of Solutions
9.12 Osmosis and Osmotic Pressure
9.13 Dialysis

10. Acids and Bases
10.1 Acids and Bases in Aqueous Solution
10.2 Some Common Acids and Bases
10.3 The Brønsted–Lowry Definition of Acids and Bases
10.4 Acid and Base Strength
10.5 Acid Dissociation Constants
10.6 Water as Both an Acid and a Base
10.7 Measuring Acidity in Aqueous Solution: pH
10.8 Working with pH
10.9 Laboratory Determination of Acidity
10.10 Buffer Solutions
10.11 Acid and Base Equivalents
10.12  Some Common Acid–Base Reactions
10.13 Titration
10.14 Acidity and Basicity of Salt Solutions

11. Nuclear Chemistry
11.1 Nuclear Reactions
11.2  The Discovery and Nature of Radioactivity
11.3 Stable and Unstable Isotopes
11.4 Nuclear Decay
11.5 Radioactive Half-Life
11.6 Radioactive Decay Series
11.7 Ionizing Radiation
11.8 Detecting Radiation
11.9 Measuring Radiation
11.10 Artificial Transmutation
11.11 Nuclear Fission and Nuclear Fusion

12. Introduction to Organic Chemistry: Alkanes
12.1 The Nature of Organic Molecules
12.2 Families of Organic Molecules: Functional Groups
12.3 The Structure of Organic Molecules: Alkanes and Their Isomers
12.4 Drawing Organic Structures
12.5 The Shapes of Organic Molecules
12.6 Naming Alkanes
12.7 Properties of Alkanes
12.8 Reactions of Alkanes
12.9 Cycloalkanes
12.10 Drawing and Naming Cycloalkanes

13. Alkenes, Alkynes, and Aromatic Compounds
13.1 Alkenes and Alkynes
13.2 Naming Alkenes and Alkynes
13.3 The Structure of Alkenes: Cis–Trans Isomerism
13.4 Properties of Alkenes and Alkynes
13.5 Types of Organic Reactions
13.6 Reactions of Alkenes and Alkynes
13.7 Alkene Polymers
13.8 Aromatic Compounds and the Structure of Benzene
13.9 Naming Aromatic Compounds
13.10 Reactions of Aromatic Compounds

14. Some Compounds with Oxygen, Sulfur, or a Halogen
14.1. Alcohols, Phenols, and Ethers
14.2. Some Common Alcohols
14.3. Naming Alcohols
14.4. Properties of Alcohols
14.5. Reactions of Alcohols
14.6. Phenols
14.7. Acidity of Alcohols and Phenols
14.8. Ethers
14.9. Thiols and Disulfides
14.10. Halogen-Containing Compounds

15. Amines
15.1. Amines
15.2. Properties of Amines
15.3. Heterocyclic Nitrogen Compounds
15.4. Basicity of Amines
15.5. Amine Salts
15.6. Amines in Plants: Alkaloids

16. Aldehydes and Ketones
16.1. The Carbonyl Group
16.2. Naming Aldehydes and Ketones
16.3. Properties of Aldehydes and Ketones
16.4. Some Common Aldehydes and Ketones
16.5. Oxidation of Aldehydes
16.6. Reduction of Aldehydes and Ketones
16.7. Addition of Alcohols: Hemiacetals and Acetals

17. Carboxylic Acids and their Derivatives
17.1. Carboxylic Acids and Their Derivatives: Properties and Names
17.2. Some Common Carboxylic Acids
17.3. Acidity of Carboxylic Acids
17.4. Reactions of Carboxylic Acids: Ester and Amide Formation
17.5. Aspirin and Other Over-the-Counter Carboxylic Acid
17.6. Hydrolysis of Esters and Amides
17.7. Polyamides and Polyesters
17.8. Phosphoric Acid Derivatives

18. Amino Acids and Proteins
18.1 An Introduction to Biochemistry
18.2 Protein Structure and Function: An Overview
18.3 Amino Acids
18.4 Acid–Base Properties of Amino Acids
18.5 Handedness
18.6 Molecular Handedness and Amino Acids
18.7 Primary Protein Structure
18.8 Shape-Determining Interactions in Proteins
18.9 Secondary Protein Structure
18.10 Tertiary Protein Structure
18.11 Quaternary Protein Structure
18.12 Chemical Properties of Proteins

19. Enzymes and Vitamins
19.1 Catalysis by Enzymes
19.2 Enzyme Cofactors
19.3 Enzyme Classification
19.4 How Enzymes Work
19.5 Effect of Concentration on Enzyme Activity
19.6 Effect of Temperature and pH on Enzyme Activity
19.7 Enzyme Regulation: Feedback and Allosteric Control
19.8 Enzyme Regulation: Inhibition
19.9 Enzyme Regulation: Covalent Modification and Genetic Control
19.10 Vitamins and Minerals

20. The Generation of Biochemical Energy
20.1. Energy and Life
20.2. Energy and Biochemical Reactions
20.3. Cells and Their Structure
20.4. An Overview of Metabolism and Energy Production
20.5. Strategies of Metabolism: ATP and Energy Transfer
20.6. Strategies of Metabolism: Metabolic Pathways and Coupled Reactions
20.7. Strategies of Metabolism: Oxidized and Reduced Coenzymes
20.8. The Citric Acid Cycle
20.9. The Electron-Transport Chain and ATP Production
20.10. Harmful Oxygen By-Products and Antioxidant Vitamins

21. Carbohydrates
21.1 An Introduction to Carbohydrates
21.2. Handedness of Carbohydrates
21.3. The D and L Families of Sugars: Drawing Sugar Molecules
21.4. Structure of Glucose and Other Monosaccharides
21.5. Some Important Monosaccharides
21.6. Reactions of Monosaccharides
21.7. Disaccharides
21.8. Variations on the Carbohydrate Theme
21.9. Some Important Polysaccharides

22. Carbohydrate Metabolism
22.1. Digestion of Carbohydrates
22.2. Glucose Metabolism: An Overview
22.3. Glycolysis
22.4. Entry of Other Sugars into Glycolysis
22.5. The Fate of Pyruvate
22.6. Energy Output in Complete Catabolism of Glucose
22.7. Regulation of Glucose Metabolism and Energy Production
22.8. Metabolism in Fasting and Starvation
22.9. Metabolism in Diabetes Mellitus
22.10. Glycogen Metabolism: Glycogenesis and Glycogenolysis
22.11. Gluconeogenesis: Glucose from Noncarbohydrates

23. Lipids
23.1. Structure and Classification of Lipids
23.2. Fatty Acids and Their Esters
23.3. Properties of Fats and Oils
23.4. Chemical Reactions of Triacylglycerols
23.5. Phospholipids and Glycolipids
23.6. Sterols
23.7. Structure of Cell Membranes
23.8. Transport Across Cell Membranes
23.9. Eicosanoids: Prostaglandins and Leukotrienes

24. Lipid Metabolism
24.1 Digestion of Triacylglycerols
24.2. Lipoproteins for Lipid Transport
24.3. Triacylglycerol Metabolism: An Overview
24.4. Storage and Mobilization of Triacylglycerols
24.5. Oxidation of Fatty Acids
24.6. Energy from Fatty Acid Oxidation
24.7. Ketone Bodies and Ketoacidosis
24.8. Biosynthesis of Fatty Acids

25. Nucleic Acids and Protein Synthesis
25.1. DNA, Chromosomes, and Genes
25.2. Composition of Nucleic Acids
25.3. The Structure of Nucleic Acid Chains
25.4. Base Pairing in DNA: The Watson–Crick Model
25.5. Nucleic Acids and Heredity
25.6. Replication of DNA
25.7. Structure and Function of RNA
25.8. Transcription: RNA Synthesis
25.9. The Genetic Code
25.10. Translation: Transfer RNA and Protein Synthesis

26. Genomics
26.1. Mapping the Human Genome
26.2. A Trip Along a Chromosome
26.3. Mutations and Polymorphisms
26.4. Recombinant DNA
26.5. Genomics: Using What We Know

27. Protein and Amino Acid Metabolism

27.1. Digestion of Proteins
27.2. Amino Acid Metabolism: An Overview
27.3. Amino Acid Catabolism: The Amino Group
27.4. The Urea Cycle
27.5. Amino Acid Catabolism: The Carbon Atoms
27.6. Biosynthesis of Nonessential Amino Acids

28. Chemical Messengers: Hormones, Neurotransmitters, and Drugs
28.1. Messenger Molecules
28.2. Hormones and the Endocrine System
28.3. How Hormones Work: Epinephrine and Fight-or-Flight
28.4. Amino Acid Derivatives and Polypeptides as Hormones
28.5. Steroid Hormones
28.6. Neurotransmitters
28.7. How Neurotransmitters Work: Acetylcholine, Its Agonists and Antagonists
28.8. Histamine and Antihistamines
28.9. Serotonin, Norepinephrine, and Dopamine
28.10. Neuropeptides and Pain Relief
28.11. Drug Discovery and Drug Design

29. Body Fluids
29.1 Body Water and Its Solutes
29.2. Fluid Balance
29.3. Blood
29.4. Plasma Proteins, White Blood Cells, and Immunity
29.5. Blood Clotting
29.6. Red Blood Cells and Blood Gases
29.7. The Kidney and Urine Formation
29.8. Urine Composition and Function

{교재 사용시 강의 자료 문의 바랍니다.}
제품명 Fundamentals of General, Organic, and Biological Chemistry: Pearson New International Edition, 7/E
판매가격 50,000원
제조사 Pearson
더 자세한 정보를 원하시면 클릭! 이동하기
위 상품과 관련된 상품이 없습니다.
번호 제목 이름 별점 날짜
아직 작성된 상품평이 없습니다.
번호 제목 이름 날짜 비고
작성된 상품문의가 없습니다.
구입제품의 이상이 있을 경우
- 구입후 7일 이내에 동일제품으로 교환 가능하며 운송비는 판매자 부담입니다.
- 다른 제품으로 교환, 또는 이상이 없는 제품과 함께 교환을 원하실 경우 구매자께서 운송비를 부담합니다.

구입제품의 이상이 있을 경우 (색상,사이즈,다른상품교환)
- 구입후 7일이내 교환 가능하며 구매자께서 운송비를 부담합니다.
(30000원 이상 구매하셔서 택배비를 무상으로 받으셨을 경우, 취소하시게 되면 왕복 운송비를 구매자께서 부담합니다.)

!! 주의사항
비닐포장 및 Tag의 폐기 또는 훼손 등으로 상품 가치가 멸실된 경우에는 제한.
반품시에 해당 사은품이 있을 경우 같이 보내주셔야 합니다.
결제후 2~5일 이내에 상품을 받아 보실 수 있습니다.
국내 최대의 물류사 CJ택배를 통하여 신속하고 안전하게 배송됩니다.
3만원 이상 구입시 무료배송입니다.
(제주도를 포함한 도서,산간지역은 항공료 또는 도선료가 추가됩니다.)
결제방법은 신용카드, 국민/BC(ISP), 무통장입금, 적립금이 있습니다.
정상적이지 못한 결제로 인한 주문으로 판단될 때는 임의로 배송이 보류되거나,주문이 취소될 수 있습니다.
세포의세계 8판 2장 3장 .. 2018/05/11
문의 드립니다 2018/05/11
켐벨 생명과학 10판 (2쇄).. 2018/05/10
brock의 미생물학 연습문.. 2018/04/22
캠벨생명과학 용월책 교재 2018/04/22
Arboriculture: Integrate.. 50,000원
Principles of Plant Scie.. 40,000원
Introduction to Animal S.. 45,000원
Companion Animals: Their.. 45,000원
상담시간    평일 09:30 ~ 18:00 토,일,공휴일 휴무
상담 및 문의전화    02-581-4057~8 |  팩스:02-581-4059 (inquiry@biosciencepub.com)
상호 : (주)바이오사이언스출판|경기도 안양시 동안구 전파로 107(호계동)
사업자등록번호 : 114-86-69898 (정보확인)| 통신판매업신고 : 제0978호| 부가통신사업자번호 :
대표이사 : 문정구| 개인정보 관리책임자 : 장부례| 개인정보 보호기간 : 회원탈퇴시
Copyrightⓒ (주)바이오사이언스출판 All rights reserved. Designed by wepas.com